And the winner is …


The world’s most famous radio telescope will become the “Karl G. Jansky Very Large Array” to honor the founder of radio astronomy, the study of the universe via radio waves naturally emitted by objects in space. The National Radio Astronomy Observatory (NRAO) announced the new name for the National Science Foundation’s Very Large Array (VLA) at the American Astronomical Society’s meeting in Austin, Texas. The new name will become official at a rededication ceremony at the VLA site in New Mexico on March 31.

File photo: The Very Large Array, located on the Plains of San Agustin in western Socorro County, will be renamed in honor of Karl G. Jansky, founder of radio astronomy, but will retain its familiar initials.

“When Karl Jansky discovered radio waves coming from the center of the Milky Way Galaxy in 1932, he blazed a scientific trail that fundamentally changed our perception of the Universe. Now, the upgraded VLA will continue that tradition by equipping scientists to address outstanding questions confronting 21st-century astronomy,” said NRAO Director Fred K.Y. Lo.

“It is particularly appropriate that the upgraded Very Large Array honor the memory and accomplishments of Karl Jansky,” Lo explained, adding that “the new Jansky VLA is by far the most sensitive such radio telescope in the world, as was the receiver and antenna combination that Jansky himself painstakingly developed 80 years ago.”

The new name was selected from among 23,331 suggestions submitted by 17,023 people from more than 65 countries. The NRAO asked the public and the astronomical community to suggest names that reflected both the proud heritage and the future promise of the telescope. Many names, including that honoring Jansky, were submitted by more than one person. The number of unique names submitted was 16,223. The observatory accepted suggestions at a web site open from mid-October to Dec. 1, 2011.

“We deeply appreciate the strong public interest in the VLA and in astronomy that is represented by the many people who submitted suggestions,” Lo said. “There was a tremendous amount of thought and creativity that went into the numerous submissions. In the end, we decided it was most appropriate to name the telescope after a genuine pioneer who took the first step on the road that led to this powerful scientific facility.”

Karl Guthe Jansky joined Bell Telephone Laboratories in New Jersey in 1928, immediately after receiving his undergraduate degree in physics. He was assigned the task of studying radio waves that interfered with the recently-opened transatlantic radiotelephone service.

After designing and building advanced, specialized equipment, he made observations over the entire year of 1932 that allowed him to identify thunderstorms as major sources of radio interference, along with a much weaker, unidentified radio source. Careful study of this “strange hiss-type static” led to the conclusion that the radio waves originated from beyond our Solar System, and indeed came from the center of our Milky Way Galaxy.

His discovery was reported on the front page of the New York Times on May 5, 1933, and published in professional journals. Janksy thus opened an entirely new “window” on the universe. Astronomers previously had been confined to observing those wavelengths of light that our eyes can see.

“This discovery was like suddenly being able to see green light for the first time when we could only see blue before,” Lo said.

Through the new “window” that Jansky opened, astronomers study radio emission from objects throughout the universe.

Discoveries made with radio telescopes have earned four Nobel Prizes. Those include the discovery of pulsars, the ubiquitous microwave background radiation that is the remnant heat from the Big Bang, and the first indirect evidence for the gravitational waves predicted by Albert Einstein.

Jansky, who died at the relatively young age of 44, before radio astronomy produced its major contributions, never was so honored for his discovery, but a Nobel Prize was awarded in 2002 for comparable discoveries of cosmic radiation in other regions of the spectrum. Jansky has been memorialized by the scientific unit “Jansky” that astronomers use every day as a measurement of the strength of astronomical sources.